

Peroxo-Zr/Hf-Containing Undecatungstosilicates and -Germanates

Sib Sankar Mal,^{†,‡} Nadeen H. Nsouli,^{†,‡} Mauro Carraro,[§] Andrea Sartorel,[§] Gianfranco Scorrano,[§] Holger Oelrich, \pm Lorenz Walder,* \pm Marcella Bonchio,*,§ and Ulrich Kortz*,†

† School of Engineering and Science, Jacobs University, P.O. Box 750 561, 28725 Bremen, Germany,

§ Department of Chemical Sciences, ITM-CNR, University of Padova, Via Marzolo 1, 35131 Padova, Italy, and

 $^{\perp}$ Institute of Chemistry, University of Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany.
‡ These authors contributed equally to this work.

Received November 8, 2009

A family of dimeric, peroxo-containing heteropolytungstates, $[M_2(O_2)_2(XW_{11}O_{39})_2]^{12}$ [M = Zr⁴⁺, X = Si (1), Ge (2); M = Hf⁴⁺, $X = Si$ (3)], have been synthesized by reacting ZrCl₄/HfCl₄ with the respective monolacunary Keggin precursor $\left[\frac{\text{XW}_{11} \text{O}_{39} \right]^{\bar{8}-} (\text{X-Si}, \text{Ge})$ in an aqueous acidic medium ($pH 4.8$). The isostructural polyanions $1-3$ are composed of two $(XW_{11}O_{39})$ Keggin units encapsulating a central diperoxo-dimetal fragment $\widetilde{\{M_2(O_2)\}_2\}^{4+}$ (M=Zr⁴⁺, Hf⁴⁺⁾. Cyclic voltammetry and exhaustive electrolysis studies indicate fast reductive release of the peroxo ligands upon reduction of $1-3$. Stoichiometric oxo-transfer studies from $1-3$ to the substrate L-methionine were performed, and the reactions were monitored by ¹H NMR.

Polyoxometalates (POMs) are discrete-molecular metal-oxo clusters with a large structural and compositional variety and a multitude of potential applications in many different areas.¹ POMs can be functionalized by either grafting or incorporating organometallic groups, lanthanides, or transition metals into the polyanion framework. The latter leads to transition-metal-substituted polyanions, constituting one of the largest subclasses in this field.

Propose Chemical Society Published on The Chemical In particular, there has been an impressive development in the synthesis of zirconium(IV) and hafnium(IV)-containing polyanions in recent years.^{2,3} In 1989, Finke et al. reported on the synthesis and structural characterization of $[S_i]_2W_{18-}$ $Zr_3O_{71}H_3]^{11-}$, which was the first example of a Zr^{4+} -substituted POM.^{2a} Other examples based on the Keggin structure include $[(PNbW_{11}Q_{40})_{2}ZrCp_{2}]^{6-}$,^{2b} $[Zr_{4}O_{2}(OH)_{2-}$ $(CH_3COO)_2(\alpha$ -GeW₁₀O₃₇)₂]^{12-2₁ [Zr₃O(OH)₂(α -GeW₉O₃₄)-} $(\beta$ -GeW₉O₃₄)]^{12-2j} [(γ-SiW₁₀O₃₆)₂Zr₂(μ-OH)₂]¹⁰⁻, [(γ-Si- $W_{10}O_{36}$)₂ $Zr_2(\mu$ -OH)(μ -OCH₃)]^{10- $\frac{2\hbar}{\lambda}$ and [{PW₁₁O₃₉ $Zr(\mu$ -} $\overrightarrow{OH})_2^2$ ⁸⁻.^{2d Zr⁴⁺-containing POMs of the Wells-Dawson} type include $[Zr_4(\mu_3\text{-}O)_2(\mu_2\text{-}OH)_2(H_2O)_4(P_2W_{16}O_{59})_2]^{14-}$ ^{2c} $[{({\rm P}_2{\rm W}_{15}{\rm O}_{54}({\rm H}_2{\rm O})_2)}_2{\rm Zr}]^{12^{-3}}$, and $[{({\rm P}_2{\rm W}_{15}{\rm O}_{54}({\rm H}_2{\rm O})_2)}_2{\rm Zr}{\rm P}_{2^{-3}}$ $W_{17}O_{61}$ }]^{14-2g}On the other hand, [$\{(\mu\text{-MeO})Z_{\text{r}}W_{5}O_{18}^{2}\}$]^{6-7f} $\left[W_5O_{18}Zr(H_2O)_{3-n}(DMSO)_n\right]^{2-}$ (n=1 and 2), and the dimeric $\left[\{\vec{W}_5\vec{O}_{18}\vec{Z}r(\mu\text{-OH})\}\right]_2\right]$ ^{6-2e} are examples of $\vec{Z}r^{4+}$ -containing structures of the Lindqvist type.

Regarding Hf^{IV}-substituted POMs, the first examples were $[Hf(\alpha_2-P_2W_17O_{61})_2]^{16-}$ and $[Hf(\alpha-PW_{11}O_{39})_2]^{10-}$ reported by Nomiya et al. in 2006.^{3a} Other examples include $[\alpha_1$ - $\text{HfP}_2W_{17}\text{O}_{61}]^{6-}$, [α-Hf(OH)PW₁₁Q₃₉]⁴⁻,^{3b} and [Hf₄(μ₃- $O_2(\mu$ -OH)₂(H₂O)₄(P₂W₁₆O₅₉)₂]¹⁴⁻.^{3c}

Because of the large size of the Zr^{4+} and Hf^{4+} ions, compared to 3d metal ions, their coordination numbers can reach eight, with one or more terminal, labile water molecules. This may allow for ligand exchange, resulting in substrate and/ or peroxide activation within the metal coordination sphere.4

^{*}To whom correspondence should be addressed. E-mail: lorenz.walder@ uni-oshabrueck.de (L.W.), marcella.bonchio@unipd.it (M.B.), u.kortz@ jacobs-university.de (U.K.).

^{(1) (}a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer: Berlin, 1983. (b) Pope, M. T. *Comp. Coord. Chem. II* **2003**, 4, 635. (c) Hill, C. L. *Comp.* Coord. Chem. II 2003, 4, 679. (d) Pope, M. T., Müller, A., Eds. Polyoxometalates: from Platonic Solids to Anti Retroviral Activity; Kluwer: Dordrecht, The Netherlands, 1994. (e) *Chem. Rev.* 1998, 98, 1-389 (Special Thematic Issue on Polyoxometalates). (f) Pope, M. T., Müller A., Eds. Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications; Kluwer: Dordrecht, The Netherlands, 2001. (g) Borrás-Almenar, J. J., Coronado, E., Müller, A., Pope, M. T., Eds. Polyoxometalate Molecular Science; Kluwer: Dordrecht, The Netherlands, 2004.

^{(2) (}a) Finke, R. G.; Rapko, B.; Weakley, T. J. R. *Inorg. Chem.* 1989, 28, 1573. (b) Radkov, E. V.; Young, V. G., Jr.; Beer, R. H. J. Am. Chem. Soc. 1999, 121, 8953. (c) Gaunt, A. J.; May, I.; Collison, D.; Holman, K. T.; Pope, M. T. J. Mol. Struct. 2003, 656, 101. (d) Kholdeeva, O. A.; Maksimov, G. M.; Maksimovskaya, R. I.; Vanina, M. P.; Trubitsina, T. A.; Naumov, D. Yu.; Kolesov, B. A.; Antonova, N. S.; Carbo, J. J.; Poblet, J. M. *Inorg. Chem.* 2006, 45, 7224. (e) Carabineiro, H.; Villanneau, R.; Carrier, X.; Herson, P.; Lemos, F.; Ribeiro, F. R.; Proust, A.; Che, M. *Inorg. Chem.* 2006, 45, 1915. (f) Errington, R. J.; Petkar, S. S.; Middleton, P. S.; McFarlane, W.; Clegg, W.; Coxall, R. A.; Harrington, R. W. J. Am. Chem. Soc. 2007, 129, 12181. (g) Fang, X.; Hill, C. L. Angew. Chem., Int. Ed. 2007, 46, 3877. (h) Yamaguchi, S.; Kikukawa, Y.; Tsuchida, K.; Nakagawa, Y.; Uehara, K.; Yamaguchi, K.; Mizuno, N. Inorg. Chem. 2007, 46, 8502. (i) Chen, L.; Liu, Y.; Chen, S.; Hu, H.; Fu, F.; Wang, J.; Xue, G. J. Cluster Sci. 2009, 20, 331. (j) Chen, L.; Li, L.; Liu, B.; Xue, G.; Hu, H.; Fu, F.; Wang, J. Inorg. Chem. Commun. 2009, 12, 1035.

^{(3) (}a) Kato, C. N.; Shinohara, A.; Hayashi, K.; Nomiya, K. *Inorg. Chem.* 2006, 45, 8108. (b) Boglio, C.; Micoine, K.; Rémy, P.; Hasenknopf, B.; Thorimbert, S.; Lacôte, E.; Malacria, M.; Afonso, C.; Tabet, J.-C. Chem. Eur. J. 2007, 13, 5426. (c) Saku, Y.; Sakai, Y.; Nomiya, K. *Inorg. Chem.*

Commun. 2009, 12, 650.

(4) (a) Zhang, X.; O'Connor, C. J.; Jameson, G. B.; Pope, M. T. *Inorg.* Chem. 1996, 35, 30. (b) Neumann, R.; Dahan, M. *Nature* 1997, 388, 353. (c) Nozaki, C.; Kiyoto, I.; Minai, Y.; Misono, M.; Mizuno, N.Inorg. Chem. 1999, 38, 5724. (d) Kortz, U.; Savelieff, M. G.; Bassil, B. S.; Keita, B.; Nadjo, L. *Inorg.* Chem. 2002, 41, 783. (e) Sartorel, A.; Carraro, M.; Scorrano, G.; Bassil, B. S.; Dickman, M. H.; Keita, B.; Nadjo, L.; Kortz, U.; Bonchio, M. Chem.-Eur. J. 2009, 15, 7854.

In particular, zirconium peroxides have shown unique selectivity performance, 5 leading to an interest in catalytic applications of related materials. On the other hand, knowledge of the structural and electronic properties of zirconium(IV) peroxides is limited.⁶ Access to zirconium(IV) peroxides by ligand-mediated O_2 activation is of major importance, as recently demonstrated by Abu-Omar's group.^{6d} Monoperoxo complexes have been isolated by reaction with H_2O_2 and in the presence of nitrogenoxygen/sulfur donor ligands.7 However, peroxo species containing tri- and tetradentate ligands turn out to be inert in the oxidation of organic substrates, including phosphines, alkenes, and alcohols. Hafnium analogues are even less documented.⁸ An important discovery is the structural characterization of peroxo-bridged hafnium(IV) porphyrinato dimers, displaying two O_2^{2} ligands with a rather unique side-on bridging mode.⁹

Recently, Kortz's group prepared the tetra- and hexazirconium-containing tungstosilicates $[Zr_4O_2(OH)_2(H_2O)_4(\beta \text{SiW}_{10}\text{O}_{37})_2]^{10-}$ and $\text{[Zr}_6\text{O}_2(\text{OH})_4\text{(H}_2\text{O})_3(\beta \cdot \text{SiW}_{10}\text{O}_{37})_3]^{14-70a}$ We were also able to synthesize the first examples of structurally characterized Zr/Hf-peroxo POMs, $\overline{[M_6(O_2)_6(OH)_6]}$ $(\gamma \text{-} \dot{S} \text{i} W_{10} O_{36})_3]^{18-}$ (M = \dot{Z} r, Hf).^{10b} This structural type features a cyclic 6-peroxo-6-Zr/Hf core with a side-on bridging peroxide moiety between adjacent Zr/Hf pairs. This finding demonstrated that peroxo groups can be fixed exclusively at the incorporated transition-metal ions without involving any tungsten addenda atoms. In order to find out whether other peroxo POMs with such a characteristic exist, we decided to systematically investigate the interaction of Zr^{4+} and Hf^{4+} ions with other lacunary heteropolytungstates in aqueous solution and in the presence of H_2O_2 .

This work has resulted in three novel Keggin-based dimeric structures, $[M_2(O_2)_2(\alpha \text{-} XW_{11}O_{39})_2]^{12}$ $[M = Zr^{4+}, X = Si (1),$ Ge (2); $M = Hf^{4+}$, $X = Si (3)$; see Figure 1]. The title polyanions 1-3 were prepared in a simple one-pot stoichiometric reaction of $[\alpha$ -X $\hat{W}_{11}O_{39}]^{8-}$ (X = Si, Ge) with Zr^{4+}/Hf^{4+} in aqueous solution (pH 4.8). A few drops of aqueous H_2O_2 (30%) were added to the reaction mixture, and the solution was stirred at $80 °C$ for 30 min.

Figure 1. Combined polyhedral/ball-and-stick representation of $[M_2(O_2)_2(\alpha \cdot XW_{11}O_{39})_2]^{12}$ [M = Zr⁴⁺, X = Si (1), Ge (2); M = Hf⁴⁺, $X = Si(3)$. The color code is as follows: WO₆ octahedra, turquoise; Si/ Ge, blue; Zr/Hf, green; peroxo, red.

Polyanions 1 and 2 were isolated in the form of a hydrated potassium salt $K_{12}[M_2(O_2)_2(\alpha \text{-} XW_{11}O_{39})_2] \cdot 25H_2O$ [(M = Zr^{4+} , $X = Si (K-1)$; Ge (K-2)], and polyanion 3 was isolated as a mixed potassium-rubidium salt K_{10} , Rb_1 , $[Hf_2(O_2)]$ $(\alpha-SiW_{11}O_{39})_2$ \cdot 21H₂O (**KRb-3**).¹¹ The novel polyanions 1–3 consist of two $\left[\alpha - XW_{11}O_{39}\right]^8$ (X = Si, Ge) anions linked by a cationic ${M_2(O_2)_2}^{4+}$ $(M = Zr^{4+}, Hf^{4+})$ bridge in a headon fashion, resulting in an assembly with C_i point group symmetry. The Zr^{4+} and Hf^{4+} ions are coordinated to eight oxygen atoms, resulting in a distorted square-antiprismatic geometry. Four of these oxygen atoms belong to the Keggin fragment and the other four to the two peroxo groups (see Figure 1). According to bond valence sum calculations, 12 the four oxygen atoms of both peroxo groups are not protonated. The bimetallic bisperoxide moieties in $1-3$ show $M-O^-$ bond lengths that are in good agreement with those observed for

⁽⁵⁾ Bonchio, M.; Licini, G.; Mantovani, S.; Modena, G.; Nugent, W. A. J. Org. Chem. 1999, 64, 1326.

^{(6) (}a) Schmidt, R.; Pausewang, G. Z. Anorg. Allg. Chem. 1986, 535, 135. (b) Chernyshev, B. N.; Didenko, N. A.; Bukvetskii, B. V.; Gerasimenko, A. V.; Kavun, V. Y.; Sergienko, S. S. Zh. Neorg. Khim. 1989, 34, 2786. (c) Dengel, A. C.; Griffith, W. P. *Polyhedron* 1989, 8, 1371. (d) Stanciu, C.; Jones, M. E.;

Fanwick, P. E.; Abu-Omar, M. M. *J. Am. Chem. Soc.* 2007, 129, 12400.
(7) (a) Tarafder, M. T. H.; Miah, M. A. L. *Inorg. Chem.* 1986, 25, 2265. (b) Tarafder, M. T. H.; Howlander, M. B. H.; Nath, B.; Khan, R.; Anowarul Islam, A. A. M. Polyhedron 1989, 8, 977. (c) Tarafder, M. T. H.; Islam, A. A. M. A. Polyhedron 1989, 8, 109. (d) Agarwal, D. D.; Jain, R.; Bhatnagar, R. P.; Srivastava, S. Polyhedron 1990, 9, 1405. (e) Tarafder, M. T. H.; Khan, A. R. Polyhedron 1991, 10, 819. (f) Tarafder, M. T. H.; Khan, A. R. Polyhedron 1991, 10, 973. (g) Tarafder, M. T. H.; Bhattacharjee, P.; Sarkar, A. K. Polyhedron 1992, 11, 795. (h) Islam, M. S.; Uddin, M. M. $Synth$. React. Inorg. $Met.-Org$. Chem. 1992, 22, 893. (i) Islam, M. S.; Islam, M. N.; Uddin, M. M. Synth. React. Inorg Met.-Org. Chem. 1995, 25, 1621. (j) Nasrin, J.; Islam, M. S. J. Appl. Sci. 2007, 7, 434. (k) Islam, M. S.; Begum, M.; Roy, H. N.; Pal, S. C.; Ahmed, S. Synth. React. Inorg. Met. $-Org. Chem.$ 1997, 27, 17.
(8) Chernyshev, B. N.; Didenko, N. A.; Bakeeva, N. G.; Bukvetskii, B. V.;

Gerasimenko, A. V. Zh. Neorg. Khim. **1991**, 36, 1112.
(9) Falber, A.; Todaro, L.; Goldberg, I.; Favilla, M. V.; Drain, C. M.

Inorg. Chem. 2008, 47, 454.

^{(10) (}a) Bassil, B. S.; Dickman, M. H.; Kortz, U. Inorg. Chem. 2006, 45, 2394. (b) Bassil, B. S.; Mal, S. S.; Dickman, M. H.; Kortz, U.; Oelrich, H.; Walder, L. J. Am. Chem. Soc. 2008, 130, 6696.

⁽¹¹⁾ Synthesis of $K_{12}[Zr_2(O_2)_2(\alpha-SiW_{11}O_{39})_2] \cdot 25H_2O$ (K-1). A total of 0.65 g (0.20 mmol) of $K_8[\alpha\text{-}SiW_{11}O_{39}] \cdot 14H_2O$ was dissolved in 20 mL of a 1 M CH3COOH/CH3COOK buffer solution (pH 4.8), and then 0.05 g (0.20 mmol) of $ZrCl_4$ was added. During the reaction, 5-10 drops of 30% H_2O_2 were introduced into the reaction mixture. The solution was heated at 80 $^{\circ}$ C for 30 min and filtered while still hot. Slow evaporation at room temperature led to the appearance of a yellowish crystalline product within 1 day. The solid product was finally collected by filtration and air dried. Yield: 0.48 g (74%). IR: 1006 (sh), 963 (s), 912 (s), 785 (s), 717 (sh), 522 (m), 471 (w) cm-¹ . Anal. Calcd for K-1: K, 7.20; Zr, 2.80; Si, 0.86; W, 62.1. Found: K, 7.32; Zr, 2.62; Si, 0.80; W, 61.4. The formula of K-1 is fully supported by thermogravimetric analysis (TGA). Crystal data for $K-1$: $H_{50}K_{12}O_{107}Si_2W_{22}Zr_2$, M_r =6514.8, triclinic, space group $P\overline{1}$, $a=11.5163(13)$ Å, $b=12.4128(13)$ Å, $c = 21.326(3)$ Å, $\alpha = 80.355(6)^\circ$, $\beta = 87.259(7)^\circ$, $\gamma = 63.100(5)^\circ$, $V = 2678.9(5)$ \mathring{A}^3 , Z = 1, \mathring{T} = 173(2) K, D_c = 4.038 g cm⁻³, R1 = 0.0557, wR2 = 0.1620 [I > 2 $\sigma(I)$]. Synthesis of K₁₂[Zr₂(O₂)₂(α -GeW₁₁O₃₉)₂] 25H₂O (K-2). The same procedure as for K-1 was followed, except for using 0.65 g (0.20 mmol) of K_6 Na₂[α -GeW₁₁O₃₉] 14H₂O and adding 1 M KCl after filtration. Yield: 0.46 g (70%). IR: 959 (s), 872 (s), 809 (m), 770 (m), 712 (w), 670 (sh), 530 (w),
453 (m), 422 (sh) cm⁻¹. Anal. Calcd for **K-2**: K, 7.10; Zr, 2.76; Ge, 2.20; W, 61.3. Found: K, 7.25; Zr, 2.51; Ge, 2.10; W, 60.2. The formula of K-2 is fully supported by TGA. Crystal data for K-2: $H_{50}G_{52}K_{12}O_{107}W_{22}Zr_2$, $M_r =$ 6603.9, triclinic, space group $P\bar{1}$, $a = 11.5114(4)$ Å, $b = 12.6316(6)$ Å, $c =$ 19.0236(10) Å, $\alpha = 91.249(3)^\circ$, $\beta = 92.891(2)^\circ$, $\gamma = 103.628(2)^\circ$, $V = 2683.3(2)^\circ$

A³, Z = 1, T = 173(2) K, D_c = 4.035 g cm⁻³, R1 = 0.0502, wR2 = 0.1518 [I > $2\sigma(I)$]. Synthesis of $K_{10.5}Rb_{1.5}[Hf_2(O_2)_2(\alpha-SiW_{11}O_{39})_2] \cdot 21H_2O$ (KRb-3). The same procedure as for **K-1** was followed, except for using 0.06 g (0.20 mmol) of HfCl₄ and adding 1 M RbCl after filtration. Yield: 0.46 g (69%). IR: 1007 (sh) , 962 (s) , 912 (s) , 786 (s) , 728 (sh) , 673 (sh) , 521 (m) , 474 (w) cm⁻¹. Anal. Calcd for KRb-3: K, 6.14; Rb, 1.92; Hf, 5.34; Si, 0.84; W, 60.5. Found: K, 6.48; Rb, 1.80; Hf, 5.56; Si, 0.80; W, 59.9. The formula of KRb-3 is fully supported by TGA. Crystal data for **KRb-3**: $H_{42}Hf_2K_{10.5}O_{103}Rb_{1.5}Si_2W_{22}$, $M_{\rm r}$ =6686.9, triclinic, space group $P\overline{1}$, $a=11.5111(6)$ $\rm \AA$, $b=12.5996(7)$ $\rm \AA$, $c=$ 19.0734(9) Å, α=91.487(3)°, β=92.993(3)°, γ=103.241(3)°, $V=2687.1(2)$ Å³, $Z=1$, $T=173(2)$ K, $D_c=4.132$ g cm⁻³, R1=0.0493, wR2=0.1521 [$I > 2\sigma(I)$]. (12) Brown, I. D.; Altermatt, D. <u>Acta Crystallogr</u>. **1985**, B41, 244.

Figure 2. CVs [first (black) and second (red) scans] of (a) polyanion $1(6.2 \times 10^{-4} \text{ M})$, (b) polyanion 2 $(6.0 \times 10^{-4} \text{ M})$, and (c) polyanion 3 $(3.0 \times 10^{-4} \text{ M})$ in a 0.5 M HAc/KAc buffer (pH 4.7) at glassy carbon ($A=$ 0.07 cm^2 ; $v = 0.1 \text{ V s}^{-1}$).

other organic d^0 zirconium and hafnium peroxides.^{6d,9} (Table S1 in the Supporting Information). The peroxo bond lengths $(O⁻-O⁻)$ of the title polyanions range from 1.491(11) \AA in 1, to 1.529(13) \dot{A} in 2, and to 1.523(13) \dot{A} in 3, all comparable to the O^- - O^- bond distance observed in the crystal structure of hydrogen peroxide $[1.49(1)$ Å].¹³ For polyanion 3, the peroxo bond length is in excellent agreement with known η^2 -peroxo complexes, such as the porphyrinate $Hf(\mu-\eta^2-O_2)$ complex exhibiting a O^- - O^- distance of 1.56 Å.

For all three polyanions $1-3$, the peroxo functions are readily reduced by iodide in water and titrated by a standard thiosulfate solution, confirming the presence of two active oxygen atoms (O_{act}) per molecule. The peroxo functions in $1-3$ can also be observed by cyclic voltammetry (CV). In the first cathodic scan up to -0.90 V in Figure 2a, eight electrons are transferred, leading to four water molecules and two partially reduced monomeric subunits $(POMH₂)$ on the time scale of CV according to eq 1:

first scan:
$$
POM_2(O_2)_2^{12}^- + 8e^- + 12H^+ \rightarrow 2POMH_2^{4-}
$$

+4H₂O (1)

$$
\text{second scan}: \quad 2\text{POM}^{4-} + 4\text{e}^- + 4\text{H}^+ \rightarrow 2\text{POMH}_2^{4-} \tag{2}
$$

In the second scan, only the reversible four-electron redox current remains for the first cathodic wave up to -0.90 V (eq 2). The second scan is interpreted as formulated in eq 2 possibly with minor contributions from nondissociated 1. Controlled-potential electrolysis of 1 at -0.90 V yields 8.5 electrons/molecule (eq 1). The current time trace indicates an electrocatalytic situation related to the fact that $POM₂(O₂)₂$ and POM are reduced at the same potential (see the Supporting Information).

In contrast to the classical coordination compounds cited above, polyanions $1-3$ are capable of oxygen transfer in water. Indeed, under stoichiometric conditions, the selective oxidation

Table 1. Oxidation of L-Methionine (S) by Polyanions $1-3$ in Aqueous Solution^a

^aS (7.66 mM), POM (1-3) (3.84 mM) [stoichiometric ratio defined on the basis of the total O_{act} available] in D₂O (500 μ L), at 301 K. on the basis of the total O_{act} available] in D₂O (500 μ L), at 301 K. b Determined by ¹H NMR analysis. CNo overoxidation to methionine sulfone was observed in such conditions. ^dThe initial rate of oxidation determined for $t \leq 1$ min.

of the natural amino acid L-methionine (S) to methionine oxide (SO) is observed at 301 K (eq 3).¹⁴ Kinetic and electrochemical studies on $1-3$ confirm the role of the peroxidic functions bridging the Zr/Hf centers, and the role of the XW_{11} Keggin fragments, for the electronic tuning during catalysis.

The oxygen transfer reactivity of $1-3$ is compared in Table 1 on the basis of conversion yield and kinetic determinations. The three title polyanions display a remarkable activity toward the oxidation of L -methionine, at neutral pH.¹⁵

In conclusion, we have synthesized and structurally characterized three novel Zr/Hf-peroxo-containing heterotungstates $[M_2(O_2)_2(XW_{11}O_{39})_2]^{12^-}$ [M = Zr⁴⁺, X = Si (1), Ge (2); $M = Hf^{4+}, X = Si (3)$. Electrochemistry allowed probing of the redox activity of the peroxo groups and the tungsten-oxo Keggin frameworks in $1-3$. Kinetic experiments have proven that these polyanions are effective in transferring oxygen to L-methionine. A detailed study on the oxygen transfer reactivity of these POMs will be published soon elsewhere.

Acknowledgment. U.K. thanks the German Research Council (Grant DFG-KO-2288/4-1), the Fonds der Chemischen Industrie, and Jacobs University for research support. We thank Dr. M. H. Dickman for help with XRD. Financial support from CNR and the University of Padova (PRAT CPDA084893/08; Progetto Strategico 2008, HELIOS, prot. STPD08RCX) is gratefully acknowledged. N.H.N. thanks ESF COST D40 for a STSM grant, allowing for a research visit at the University of Padova. Figure 1 was generated by Diamond Version 3.2c (copyright Crystal Impact GbR).

Supporting Information Available: Complete references for Hf^{4+}/Zr^{4+} -containing POMs, detailed Experimental and Crystallographic Sections, a table of selected bond distances, thermograms (from room temperature up to $900 °C$) of **K-1** (Figure S1), K-2 (Figure S2), and KRb-3 (Figure S3), and a controlled potential electrolysis plot of polyanion 1 (Figure S4). This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹³⁾ Abrahams, S. C.; Collin, R. L.; Lipscomb, W. N. Acta Crystallogr. 1951, 4, 15.

⁽¹⁴⁾ Skvortsov, A. N.; Zavodnik, V. E.; Stash, A. I.; Bel'skii, V. K.; Skvortsov, N. K. Russ. J. Org. Chem. 2003, 39, 170. Translated from Zh. Org. Khim. 2003, 39, 194.

⁽¹⁵⁾ A blank experiment using H_2O_2 in the absence of $1-3$ showed no significant conversion of L-methionine, under the conditions explored.